3.1022 \(\int \frac{1}{(a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}} \, dx\)

Optimal. Leaf size=140 \[ \frac{2 \tan (e+f x)}{5 a^2 f \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}+\frac{i}{5 a f (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}+\frac{i}{5 f (a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}} \]

[Out]

(I/5)/(f*(a + I*a*Tan[e + f*x])^(5/2)*Sqrt[c - I*c*Tan[e + f*x]]) + (I/5)/(a*f*(a + I*a*Tan[e + f*x])^(3/2)*Sq
rt[c - I*c*Tan[e + f*x]]) + (2*Tan[e + f*x])/(5*a^2*f*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.139244, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {3523, 45, 39} \[ \frac{2 \tan (e+f x)}{5 a^2 f \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}+\frac{i}{5 a f (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}+\frac{i}{5 f (a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + I*a*Tan[e + f*x])^(5/2)*Sqrt[c - I*c*Tan[e + f*x]]),x]

[Out]

(I/5)/(f*(a + I*a*Tan[e + f*x])^(5/2)*Sqrt[c - I*c*Tan[e + f*x]]) + (I/5)/(a*f*(a + I*a*Tan[e + f*x])^(3/2)*Sq
rt[c - I*c*Tan[e + f*x]]) + (2*Tan[e + f*x])/(5*a^2*f*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 39

Int[1/(((a_) + (b_.)*(x_))^(3/2)*((c_) + (d_.)*(x_))^(3/2)), x_Symbol] :> Simp[x/(a*c*Sqrt[a + b*x]*Sqrt[c + d
*x]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{1}{(a+i a x)^{7/2} (c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{i}{5 f (a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}}+\frac{(3 c) \operatorname{Subst}\left (\int \frac{1}{(a+i a x)^{5/2} (c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{5 f}\\ &=\frac{i}{5 f (a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}}+\frac{i}{5 a f (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}+\frac{(2 c) \operatorname{Subst}\left (\int \frac{1}{(a+i a x)^{3/2} (c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{5 a f}\\ &=\frac{i}{5 f (a+i a \tan (e+f x))^{5/2} \sqrt{c-i c \tan (e+f x)}}+\frac{i}{5 a f (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}+\frac{2 \tan (e+f x)}{5 a^2 f \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 2.42467, size = 99, normalized size = 0.71 \[ \frac{\sqrt{c-i c \tan (e+f x)} (-4 \cos (2 (e+f x))+5 i \tan (e+f x)-3 i \sin (3 (e+f x)) \sec (e+f x)+12)}{20 a^2 c f (\tan (e+f x)-i) \sqrt{a+i a \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + I*a*Tan[e + f*x])^(5/2)*Sqrt[c - I*c*Tan[e + f*x]]),x]

[Out]

((12 - 4*Cos[2*(e + f*x)] - (3*I)*Sec[e + f*x]*Sin[3*(e + f*x)] + (5*I)*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x
]])/(20*a^2*c*f*(-I + Tan[e + f*x])*Sqrt[a + I*a*Tan[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.087, size = 118, normalized size = 0.8 \begin{align*} -{\frac{4\,i \left ( \tan \left ( fx+e \right ) \right ) ^{4}-2\, \left ( \tan \left ( fx+e \right ) \right ) ^{5}+6\,i \left ( \tan \left ( fx+e \right ) \right ) ^{2}- \left ( \tan \left ( fx+e \right ) \right ) ^{3}+2\,i+\tan \left ( fx+e \right ) }{5\,f{a}^{3}c \left ( -\tan \left ( fx+e \right ) +i \right ) ^{4} \left ( \tan \left ( fx+e \right ) +i \right ) ^{2}}\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) }\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(5/2),x)

[Out]

-1/5/f*(-c*(-1+I*tan(f*x+e)))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)/a^3/c*(4*I*tan(f*x+e)^4-2*tan(f*x+e)^5+6*I*tan(
f*x+e)^2-tan(f*x+e)^3+2*I+tan(f*x+e))/(-tan(f*x+e)+I)^4/(tan(f*x+e)+I)^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [A]  time = 1.39206, size = 365, normalized size = 2.61 \begin{align*} \frac{\sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}{\left (-5 i \, e^{\left (8 i \, f x + 8 i \, e\right )} - 16 i \, e^{\left (7 i \, f x + 7 i \, e\right )} + 10 i \, e^{\left (6 i \, f x + 6 i \, e\right )} - 16 i \, e^{\left (5 i \, f x + 5 i \, e\right )} + 20 i \, e^{\left (4 i \, f x + 4 i \, e\right )} + 6 i \, e^{\left (2 i \, f x + 2 i \, e\right )} + i\right )} e^{\left (-5 i \, f x - 5 i \, e\right )}}{40 \, a^{3} c f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/40*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*(-5*I*e^(8*I*f*x + 8*I*e) - 16*I*e^(7
*I*f*x + 7*I*e) + 10*I*e^(6*I*f*x + 6*I*e) - 16*I*e^(5*I*f*x + 5*I*e) + 20*I*e^(4*I*f*x + 4*I*e) + 6*I*e^(2*I*
f*x + 2*I*e) + I)*e^(-5*I*f*x - 5*I*e)/(a^3*c*f)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c-I*c*tan(f*x+e))**(1/2)/(a+I*a*tan(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac{5}{2}} \sqrt{-i \, c \tan \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((I*a*tan(f*x + e) + a)^(5/2)*sqrt(-I*c*tan(f*x + e) + c)), x)